Effective temperature and jamming transition in dense, gently sheared granular assemblies.
نویسندگان
چکیده
We present extensive computational results for the effective temperature, defined by the fluctuation-dissipation relation between the mean square displacement and the average displacement of grains, under the action of a weak, external perturbation, of a sheared, bi-disperse granular packing of compressible spheres. We study the dependence of this parameter on the shear rate and volume fractions, the type of particle and the observable in the fluctuation-dissipation relation. We find the same temperature for different tracer particles in the system. The temperature becomes independent on the shear rate for slow enough shear suggesting that it is the effective temperature of the jammed packing. However, we also show that the agreement of the effective temperature for different observables is only approximate, for very long times, suggesting that this definition may not capture the full thermodynamics of the system. On the other hand, we find good agreement between the dynamical effective temperature and a compactivity calculated assuming that all jammed states are equiprobable. Therefore, this definition of temperature may capture an instance of the ergodic hypothesis for granular materials as proposed by theoretical formalisms for jamming. Finally, our simulations indicate that the average shear stress and apparent shear viscosity follow the usual relation with the shear rate for complex fluids. Our results show that the application of shear induces jamming in packings whose particles interact by tangential forces.
منابع مشابه
Transition from rolling to jamming in thin granular layers.
We study the granular jamming transition for sheared layers of spherical beads ranging in thickness from 1 to 3 times the grain diameter d. As the layer thickness increases slightly above d, the measured friction jumps discontinuously from 0.02 to >0.1, marking the transition from rolling to jamming. Above a critical layer thickness for jamming, the effective granular pressure displays a power ...
متن کاملepl draft Crossover from quasi-static to dense flow regime in compressed frictional granular media
We investigate the evolution of multi-scale mechanical properties towards the macroscopic mechanical instability in frictional granular media under multiaxial compressive loading. Spatial correlations of shear stress redistribution following nucleating contact sliding events and shear strain localization are investigated. We report growing correlation lengths associated to both shear stress and...
متن کاملFluctuations, correlations and transitions in granular materials: statistical mechanics for a non-conventional system.
In this work, we first review some general properties of dense granular materials. We are particularly concerned with a statistical description of these materials, and it is in this light that we briefly describe results from four representative studies. These are: experiment 1: determining local force statistics, vector forces, force distributions and correlations for static granular systems; ...
متن کاملExperimental and computational studies of jamming
Jamming is a common feature of out-of-equilibrium systems showing slow relaxation dynamics. Here we review our efforts in understanding jamming in granular materials using experiments and computer simulations. We first obtain an estimation of an effective temperature for a slowly sheared granular material very close to jamming. The measurement of the effective temperature is realized in the lab...
متن کاملMicroscopic theory of the jamming transition of harmonic spheres.
We develop a microscopic theory to analyze the phase behavior and compute correlation functions of dense assemblies of soft repulsive particles both at finite temperature, as in colloidal materials, and at vanishing temperature, a situation relevant for granular materials and emulsions. We use a mean-field statistical mechanical approach which combines elements of liquid state theory to replica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European physical journal. E, Soft matter
دوره 19 2 شماره
صفحات -
تاریخ انتشار 2006